
A Practical Location Privacy Attack
in Proximity Services

Sergio Mascetti Letizia Bertolaja Claudio Bettini
EveryWare Lab, CS Dept., Università degli Studi di Milano

Email: {sergio.mascetti,letizia.bertolaja,claudio.bettini}@unimi.it

Abstract—The aim of proximity services is to raise alerts based
on the distance between moving objects. While distance can
be easily computed from the objects’ geographical locations,
privacy concerns in revealing these locations exist, especially
when proximity among users is being computed. Distance pre-
serving transformations have been proposed to solve this problem
by enabling the service provider to acquire pairwise distances
while not acquiring the actual objects positions. It is known
that distance preserving transformations do not provide formal
privacy guarantees in presence of certain background knowledge
but it is still unclear which are the practical conditions that make
distance preserving transformations “vulnerable”.

We study these conditions by designing and testing an attack
based on public density information and on partial knowledge
of distances between users. A clustering-based technique first
discovers the approximate position of users located in the largest
cities. Then a technique based on trilateration reduces this
approximation and discovers the approximate position of the
other users. Our experimental results show that partial distance
information, like the one exchanged in a friend-finder service,
can be sufficient to locate up to 60% of the users in an area
smaller than a city.

I. INTRODUCTION

Proximity services aim at notifying a user when another user

or, more generally, an object of interest to the user happens to

be spatially closer than a certain threshold distance. Examples

of these services are so called friend-finder services. They

can be efficiently implemented by a server receiving position

information from each moving object and sending an alert

when the distance threshold condition is verified.

When users are the considered moving objects and the

server is untrusted, the acquisition of exact location informa-

tion by the server is a privacy threat. The problem of privacy

preservation in location based services has been extensively

studied in the literature [1], [2], but mostly focusing on

services identifying the location of points of interest. Since

a proximity service can be provisioned simply based on the

distance between the two moving objects, an intuitive way

to preserve location privacy is to use fake locations for the

objects, with coordinates appropriately chosen in order to

retain the correct value or a good approximation for the

relative distance. We consider the server provisioning the

service as a semi-honest entity, in the sense that it follows

the given protocol but it may attempt to infer the locations

of the users. A natural question arises: is distance information

sufficient for an adversary to find the actual location of a user?

Technically, this is equivalent to ask if distance preserving

transformations are unsafe. If users are uniformly distributed

in the geographical space and no other background knowledge

is available, the transformations are actually safe, since the

same set of distances can be observed for many different

assignments of specific positions to the users. This uniform

distribution assumption is implicitly or explicitly made in

several papers, as described in the following.

In [3] three secure computation protocols are proposed to

notify a user about the proximity of another user. Communica-

tions among the user devices occurs through a server; One of

the protocols, named Louis reveals to the server the proximity

information, assuming that this information may not lead to a

location privacy breach. This assumption should be probably

reconsidered in light of our results. In [4], [5], [6] location

privacy is achieved through spatial cloaking and encryption

techniques, though these solutions reveal to the server ap-

proximate distance information. The Longitude protocol [7]

allows users a finer control of location privacy with respect

to other friends by specifying privacy preferences in terms

of spatial granularities. Longitude also guarantees complete

privacy with respect to the server under the assumption that

it has no a priori knowledge on the distribution of users, i.e.,

when a uniform distribution is assumed. This assumption is

indeed related to the fact that the server acquires approximate

distance information. We find the assumption that distance

information does not reveal the user actual position also in

some work on general LBSs [8], [9]. In particular, in [9],

spatial cloaking is used to guarantee k-anonymity that is

computed using proximity information rather than the precise

user locations. The paper proposes both a centralized algorithm

and a distributed one. The centralized algorithm assumes a

server acquiring proximity information for all users. Revealing

proximity instead of exact positions is based on the intuition

that information on distance is not sufficient to identify the

position. Our findings would suggest that the centralized

algorithm may be subject to privacy breaches in case of a

semi-honest server.

In the context of privacy preserving data mining, it has been

shown that distance preserving transformations can be subject

to privacy attacks in presence of prior knowledge of the adver-

sary in terms of input-output pairs and samples from original

or similar dataset [10]. In our attack the only background

knowledge is the publicly available density distribution. The

unsafety of distance preserving transformations in presence of

certain kinds of background knowledge is also discussed in

2013 IEEE 14th International Conference on Mobile Data Management

978-0-7695-4973-6/13 $26.00 © 2013 IEEE

DOI 10.1109/MDM.2013.19

87

the context of secure kNN queries [11]. The authors consider

as safe the case in which the adversary observes only the

encrypted DB and the distances (called “level 1” attack). Our

study shows that even this attack model can lead to privacy

breaches when the distribution of the original data is known,

as it is the case for population distribution.

Finally, in the context of private spatial join computation,

a distance based attack in presence of background knowledge

about spatial distribution shows that the position of isolated

points (outliers) may be discovered [12]. A defense is proposed

based on a spatial transformation that eliminates distances

longer than a certain threshold in the transformed space.

In principle, friend-finder services may be effective even if

limited to short distances (2-3 km); however, our study shows

(see Section IV-D) that even ignoring any distance larger than

that threshold the attack we propose can still pose privacy

threats. In addition, our study does not want to rule out services

in which long distances are considered, and identifies under

which conditions the adversary actually derives users location.

This paper formalizes a location privacy attack that, based

on partial information on the distances between users and

public knowledge on the average density of population, aims

at approximately localizing the users, independently on their

fake position assigned by a privacy preserving algorithm.

We achieve this goal by applying a distance-based clustering

algorithm, and then matching obtained clusters with geo-

graphical regions with similar densities. Population density

information drives the mapping process. We have reported

preliminary results based on this idea in [13]. In this paper,

in addition to formalizing the attack, we significantly enhance

its effectiveness by introducing a trilateration technique, which

refines the position of other users once the position of a few

is determined. We show through an extensive experimental

evaluation, considering geographical regions with substantially

different density distributions, that the attack is effective in

practice and that this technique, not only allows to position

many more users, but it also position them with much higher

precision.

To summarize, our contributions are as follows:

1) Our study systematically explores the problem of iden-

tifying the position of moving objects based only on

partial information on their distance and on background

knowledge on the density distribution.

2) We provide a formalization of the problem in terms of

a privacy attack in presence of background knowledge

3) Our experiments on real geographic data and publicly

available population density data show that the attack

is effective even with partial distance information as

typically acquired by running proximity services.

The rest of the paper is organized as follows. In Section II

we formally describe the location re-identification attack. In

Section III we describe the specific strategy used to make the

attack practically feasible and we report the basic algorithms

and several optimizations. In Section IV we report our exper-

imental results, and we conclude the paper in Section V.

II. PROBLEM MODELING

We consider a service provisioned to a set of users by

exchanging data through a service provider that only acquires

information about the distance between some of the users.

A. Basic definitions

Let U be the set of users. Given a user u ∈ U , his position is

denoted by pos(u) that is a point in a discrete bi-dimensional

space S. We denote with dp(p1, p2) the distance1 between two

points p1, p2 ∈ S.

Given the average density of population in each area at

the precision available from public sources, we consider as

background knowledge BK the information about how many

users in U are in each area. More formally, the adversary can

compute the function nu : G → R returning the number of

expected users contained in g for each cell g of a grid2 G
partitioning the spatial domain S. Given nu(), the probability

that a generic user is located in a cell g is given by the number

of users in g divided by the total number of users |U |.
Definition 1. The probability P [u, g] that a user u is located
in a cell g of G, based on BK only, is given by: nu(g)

|U |
Note that, since the adversary has no other background

knowledge, P [u, g] for a given g is the same for all users.

During the provisioning of the service, the adversary col-

lects data about the distances between users. We call this

information the observation knowledge OK, and we model

it by the function du : U × U → R returning for a pair

of users ui and uj the distance between their positions, i.e.,

du(ui, uj) = dp(pos(ui), pos(uj)). Note that du is a partial

function and it is undefined for those pairs of users whose

distance in unknown to the adversary.

Example 1. Consider a friend-finder service provided in a
space S composed by a regular grid of 8 possible user
positions (see Figure 1(a)). Four cells are defined in S and
the probability that a generic user u is located in each cell is:
P [u, g0] = P [u, g1] = P [u, g2] = 1/6 and P [u, g3] = 1/2. We
consider 3 users: Alice (A), Bob (B) and Carl (C). Since Alice
is friend of Bob and Carl, while Bob and Carl are not friends,
two distances are known to the adversary: du(A,B) =

√
10

and du(A,C) =
√
5.

We now show how the adversary can exploit BK and OK
to infer the position of the users.

B. Modeling an attack to discover user positions

We first define the concept of user-to-point mapping m to

capture the intuition of the assignment of a specific geographi-

cal position to each of the users. The goal of the adversary is to

identify the mappings representing the real position of as much

users as possible. Formally m : U → S is a total function that

associates each user with a geographical position.

1The distance dp() can be either the euclidean distance or the geographical
distance computed on the geoid.

2Here we use a grid, but the more general concept of spatial granularity
can be used as well.

88

� � � �

�

�

�

�

�� ��

����

(a) Space divided into 4 cells

�

��

� � � �

�

�

�

�

(b) Consistent mapping m0

�

� �

� � � �

�

�

�

�

(c) Consistent mapping m1

�

� �

� � � �

�

�

�

�

(d) Consistent mapping m2

�

��

� � � �

�

�

�

�

(e) Consistent mapping m3

Fig. 1. Examples

By using OK, it is possible to restrict the set of consistent
user-to-point mappings to those that do not violate any distance

constraint defined in OK. We denote the set of all consistent

user-to-point mappings with M .

Definition 2. A user-to-point mapping m is a consistent user-

to-point mapping if, for each ui, uj ∈ U such that du(ui, uj)
is defined, du(ui, uj) = dp(m(ui),m(uj)).

Example 2. Let’s continue with Example 1 and let’s consider
a user-to-point mapping m such that: m(A) = 〈1, 1〉, m(B) =
〈2, 1〉, m(C) = 〈3, 1〉. Clearly m is not a consistent user-to-
point mapping since

√
10 = du(A,B) �= dp(m(A),m(B)) = 1

Let’s consider the different mapping m0 shown in Fig-
ure 1(b). This mapping is consistent, since du(A,B) =
dp(m(A),m(B)) and du(A,C) = dp(m(A),m(C)). Overall,
there are 4 consistent mappings that are shown in Figure 1.

Given a consistent user-to-point mapping, it is possible to

compute the probability of that mapping being correct by using

the knowledge BK. Intuitively, the probability is computed as

the conjunction of the probabilities of each user u being in the

cell where u is mapped by m. To formalize this intuition we

first need to define the up(p) function that returns, for each

point p ∈ S, the cell g of G that contains p. Then, the absolute

probability P [m] that a consistent user-to-point mapping m is

correct is:

P [pos(u1) ∈ up(m(u1)) ∧ . . . ∧ pos(u|U |) ∈ up(m(u|U |))]
(1)

Since, by Definition 1, the probability that a user is located

in a given cell is independent from the other users’ positions,

we can rewrite Equation 1 as shown in Property 1.

Property 1. The absolute probability P [m] that a consistent
user-to-point mapping m is correct is:

∏
u∈U P [u, up(m(u))].

We can now define the probability that a user-to-point

mapping m is correct relatively to the set M of all consistent

user-to-point mappings. We call this distribution of probability

the relative probability that a mapping is correct.

Property 2. The relative probability Pr[m] that a consistent
user mapping m is correct is: P [m]∑

m′∈M P [m′]

Example 3. We continue from Examples 1 and 2. The absolute
probability of m0 is P [m0] = P [A, g2] ·P [B, g1] ·P [C, g1] =
1/63. With analogous computations, the absolute probabilities
of the other three consistent mappings are: P [m1] = 1/63,

P [m2] = 3/63 and P [m3] = 9/63. Consequently m3 is the
most likely mapping and Pr[m3] 	 0.65. As a result the
adversary can conclude, with high likelihood, that A is located
in 〈1, 1〉, B is located in 〈4, 2〉 and C is located in 〈3, 2〉.

From Property 2, we can also derive the probability that a

user is located in a given area A, as shown in Property 3.

Property 3. The probability P [pos(u) ∈ A] that a given user
u is located in an area A is given by:

∑
m∈M |m(u)∈A

Pr[m]

Given the above formalization, we can define an attack as

the process of identifying consistent user-to-point mappings

and of evaluating their relative probabilities using BK. An

attack may be aimed at identifying the exact or approximated

(in terms of an area) position of one or more specific users,

or aimed at discovering the position of all users.

C. Modeling the attack exploiting users’ clustering

The attack process presented in Section II-B has a clear

computational limit due to the combinatorial explosion of the

number of the mapping functions that are exponential in the

number of users. For this reason, the problem of computing

the consistent mappings is intractable, and not likely to have

a practical solution even for small sets of users.

In order to show that there are practical and still threatening

attacks, we now formalize an attack aimed at discovering

the area where the user is with a looser approximation. The

general idea is to cluster the users according to their distances,

hence identifying sets of users close to each other, and then

using BK to map clusters to geographical regions. As an

example, clusters of appropriate dimensions may correspond

to cities, and the adversary may be able to associate a cluster

of users to the correct city as their actual approximate position.

In this attack we model an arbitrary geographical region z
in S as the set of cells from G that overlap with z. We denote

with Z a set of these regions. For example, the regions in Z
are the cities where the adversary tries to locate users. The

minimum distance between regions is defined as:

dmin
z (z1, z2) = min

g1∈z1,g2∈z2
dmin
g (g1, g2)

where dmin
g (g1, g2) is the minimum distance between two cells

g1 and g2. The maximum distance dmax
z (z1, z2) between two

regions is defined analogously.

In Section IV, while considering cities as the regions, we

show that, given OK, it is possible to identify a set C of

89

clusters of U that are actually composed by persons located

in cities. Note that C is not a partition of U , since we are

interested in a set of regions not covering the entire space

(e.g., only the largest cities). After the clustering, we need

to associate each cluster with the correct region, so that we

can derive the geographical position of the cluster. For this

purpose, we model the cluster-to-region mapping m : C →
Z that represents an association of each cluster to a region.

Conceptually, a cluster-to-region mapping is similar to a user-

to-point mapping, with the only theoretical difference that in a

cluster-to-region mapping all clusters are mapped to different

regions, while in the user-to-point mapping two or more users

can be mapped to the same point.
Intuitively, this attack becomes practically feasible when the

number of clusters and regions is small, as in the case of the

main cities of a country.
Analogously to the case of user-to-point mappings, we

are interested in identifying the consistent cluster-to-region

mappings, hence excluding the ones inconsistent with available

distance information. Intuitively, a cluster-to-region mapping

m is consistent if for each pair of clusters and each pair of

users in the two clusters the distance between the two users is

smaller (greater, respectively) than the maximum (minimum,

respectively) distance between the two regions corresponding
to the two clusters. Clearly the consistency condition can only

be checked for those users such that du() is defined.

Definition 3. A cluster-to-region mapping m is called con-

sistent cluster-to-region mapping if, for each pair of clusters
c1, c2 ∈ C, and for each pair of users u1 ∈ c1, u2 ∈ c2 such
that du(u1, u2) is defined, the following holds:

dmin
z (m(c1),m(c2)) ≤ du(u1, u2) ≤ dmax

z (m(c1),m(c2))

Similarly to the case of user-to-point mappings, we want

to assign a probability to the consistent cluster-to-region

mappings. This probability can be derived from nu(). Indeed,

extending Definition 1, the probability P [u, z] that a generic

user u is located in region z is:
∑

g∈z P [u, g].
Since by Definition 1 the probability that a user is in a region

z is independent from the probability of other users being in z
and each user has the same probability, the probability P [c, z]
that all users in a cluster c are in z is given by: (P [u, z])|c|.

We can now define the absolute probability of a consistent

cluster-to-region mapping.

Property 4. The absolute probability P [m] that, given a
clustering C and a generic user u, a consistent cluster-to-
region mapping m is correct is:

P [m] =
∏
c∈C

(P [u,m(c)])|c|

Property 5 defines the relative probability of a mapping.

Property 5. Let C be a clustering and M the set of consistent
cluster-to-region mappings. The relative probability Pr[m] that
a consistent cluster-to-region mapping m is correct is:

Pr[m] =
P [m]∑

m′∈M P [m′]

III. TECHNIQUES

In this section we first show how the attack based on user

clustering can be computed in practice. Then, we describe

an additional step, based on trilateration, that, as shown in

Section IV, significantly improves the attack performances.

A. Computing clusters of users

We now present a clustering technique designed to identify

k groups of users that are located in user-dense areas of S.

The computation of the clusters of users needs to be based

only on the observation knowledge OK, i.e., on the relative

distances between some pairs of users. We adopt the Single
Linkage clustering technique that indeed relies only on relative

distances [14]. The idea of this technique is to start with a set

containing a single user for each cluster, and then to iteratively

merge the two closest clusters. The notion of “closest clusters”

is based on the minimum distance between two clusters c1 and

c2 defined as follows:

dmin
c (c1, c2) = min

u1∈c1,u2∈c2 s.t. du(u1,u2) is defined
du(u1, u2)

Note that dmin
c (c1, c2) is undefined if du(u1, u2) is undefined

for all pairs of users u1 ∈ c1, u2 ∈ c2.

Algorithm 1 SingleLinkageClustering

Input: the set U of users, a set Z of sets of cells, the function

du(), an integer k.

Output: a set C of sets of users.

Procedure:
1: C = {{u1}, {u2}, . . . , {u|U |}}
2: Order Z in decreasing order with respect to the expected

number of users. Let n be the number of users in the k-th

element of Z.

3: while (|C| > 1) AND (exist c1, c2 ∈ C such that

dc(c1, c2) is defined) AND (the number of users in the

k-th largest cluster of C is less than n) do
4: Find clusters c1 and c2 in C such as their distance is

minimal (closest clusters)

5: C = C \ {c1} \ {c2}
6: C = C ∪ {c1 ∪ c2}
7: end while
8: Remove from C the sets with cardinality smaller than n;

9: return C;

The clustering procedure is presented in Algorithm 1. In the

initialization phase (Lines 1 and 2), the |U | clusters are created,

each one containing a single user, and the set Z of regions is

ordered accordingly to the number of expected users. This

number is actually derived from background knowledge that

includes population density for each cell. Expected number

of users can be easily derived from this. The number n of

expected users in the k-th most user-populated region in Z is

used in the clustering steps of the algorithm.

At each iteration, the two closest clusters are merged (Lines

4 to 6). The termination of the iteration (and consequently of

the algorithm) depends on three conditions. The first condition

90

says to stop when |C| = 1, since in this case the users are all

into a single cluster, and the algorithm just fails to identify the

clusters that are associated with the regions of Z. The second

termination condition is satisfied when no distance among

any pair of current clusters is known. This also indicates a

“failed clustering” unless the third condition is also verified.

The third condition denotes a “successful clustering”. When

it is verified, the algorithm has identified a clustering set C
containing k clusters each having a number of users at least

as large as n. Intuitively, this condition is aimed at identifying

the clusters that correspond to the k most populated regions.

Since we are only interested in these clusters, we remove the

others before returning C (Line 8).

Example 4. Figure 2 graphically shows the clusters identified
by Algorithm 1 after 1500 and 2500 iterations in a run with
16, 000 users in France. Each dots corresponds to a user, with
black dots representing users belonging to a “large” cluster
(i.e., having cardinality larger than n). After 1500 iterations
only 4 “large” clusters are found, while after 2500 iterations
the algorithm identifies a total of 8 clusters that actually
correspond to some of the 11 most populated cities of France.

Fig. 2. Example of execution of Algorithm 1

The number of iterations of Algorithm 1 is linear in the

number of users. The operation that dominates the temporal

complexity of each iteration is the computation of the two

closest clusters. Without any optimization, this computation

would require to calculate the distance between any pair of

clusters. This operation is quadratic in the number of users,

making the worst case time complexity of the algorithm

O(|U |3) and the space complexity linear in |U |, the space

needed to store C.

To improve the time complexity we designed a data struc-

ture that stores, for each cluster c: a) the set c.users of users

in the cluster, b) the list c.dist of pairs 〈c′, dc(c, c′)〉 for each

c′ ∈ C such that dc(c, c
′) is defined, and c) the element c.min

of c.dist having the smallest value of dc(c, c
′). Note that, since

users’ and clusters’ distances are symmetric, it is not necessary

to store all pairwise distances between clusters, but only half

of them. In the initialization phase it is necessary to compute

du() for each pair of users and the worst case time complexity

of this operation is O(|U |2). The operation that dominates the

complexity of each iteration is to merge c1.dist and c2.dist
for two clusters c1 and c2. This is analogous to compute

the union between two sets. Since we define a total order

among clusters and we use it to maintain c1.dist and c2.dist
ordered, the union of c1.dist and c2.dist can be computed in

a time linear in the sum of the number of users in c1 and c2,

that is bounded by |U |. To summarize, the initialization phase

has a worst case time complexity of O(|U |2). Each iteration

has a worst case time complexity of O(|U |) and at most |U |
iterations are required, hence the worst case time complexity

of the algorithm is O(|U |2).
B. Computation of consistent mappings

Once clusters of users have been identified, cluster-to-region

mappings should be generated and the consistent ones selected.

Two problems arise in this process. The first problem is

due to what we call “cluster stretching”: when the clustering

algorithm is run, the large majority of the users in a cluster

are located in a region of Z, but few of them are also located

slightly outside the region (e.g., in the suburbs of a city).

For example see Figure 3 where the rectangle represents the

minimum bounding rectangle (MBR) of Paris and the dots

(both black and gray) are the users in a cluster. It can be

observed that, while the great majority (90%) of dots are

within the MBR, few of them are slightly outside.

Fig. 3. The “cluster stretching” problem.

The “cluster stretching” problem could lead to erroneously

classify a mapping as inconsistent. To face this problem, we

introduce a tolerance error factor α ∈ (0, 1) in the condition

to check the consistency (see Definition 3) as follows:

α·dmin
z (m(c1),m(c2)) ≤ du(u1, u2) ≤ 1

α
·dmax

z (m(c1),m(c2))

The intuition is that, when α is close to one, the tolerance

is low. For values of α closer to 0, the value of the left part

of the inequality gets smaller, while the right part gets larger,

hence making the condition easier to satisfy even if a user

may be slightly outside the region. In Section IV-B we show

the impact of the tolerance error factor and we motivate the

choice of the value used in our experiments.

The second problem is related to the fact that the number of

possible cluster-to-region mappings is the same as the number

of all ordered sequences of |C| distinct elements of Z, i.e.,

|Z|!/(|Z| − |C|)!. Clearly, this leads to a large number of

possible mappings, also for small sets Z and C. Since for

each possible mapping we need to check if that mapping

is consistent, it is necessary to optimize this operation. For

91

this purpose the minimum and maximum distance between

each pair of regions in Z (i.e., dmin
z (z1, z2) and dmax

z (z1, z2))
are pre-computed off-line. We also pre-compute, for each

pair of clusters c1, c2 ∈ C, the minimum (dmin
c (c1, c2)) and

maximum (dmax
c (c1, c2)) distance between each pair of users

u1 ∈ c1 and u2 ∈ c2. It follows that checking if a mapping

is consistent requires evaluating the following two inequalities

for each pair of clusters c1, c2 of C.

α · dmin
z (m(c1),m(c2)) ≤ dmin

c (c1, c2)

dmax
c (c1, c2) ≤ 1

α
· dmax

z (m(c1),m(c2))

By using this optimization, the process of checking if a

mapping is consistent has a worst case time complexity of

O(|C|2). Considering that we need to run this computation

for each possible mapping, the computational complexity is

O
(
|C|2 · |Z|!

(|Z|−|C|)!
)

. Clearly this may be still problematic

in general, however, as we show in Section IV, the attack

can be effectively computed for values of |C| and |Z| that

are sufficient to identify the approximate position of the users

located in the most populated cities.

C. Evaluation of probabilities

The last step of the attack process consists in computing the

absolute and relative probabilities of each consistent cluster-

to-region mapping. This is done accordingly the formulas

presented in Section II. We compute the function nu(g) from

the distribution of inhabitants of g, which is public information

[15], and by assuming that the users of the service are uni-

formly distributed in the population. Formally, given inhab(g)
the number of inhabitants of g and totPop the total population

in the spatial domain S: nu(g) = inhab(g)/totPop · |U |.
While, in theory, the number of consistent cluster-to-region

mappings can be in the same order of all the possible cluster-

to-region mappings, in practice these mappings are a small

fraction (in our experiments, in which major cities are consid-

ered as regions, they are in the order of a few units at most).

A technical difficulty arises in the computation of the

absolute probability of a mapping due to the fact that some

of the values used in the computations may be non-negative

numbers very close to 0 (for example, these values can be

in the order of 10−10000). The precision of standard floating

point representations (e.g., primitive double type in Java) is not

sufficient to manage these values. We solved the problem with

non approximated decimal representations and, in particular,

with the “BigDecimal” standard Java class, that, however, has

a significant negative effect on the computation time.

D. Trilateration

When the cluster-to-region mapping with highest probability

is found, the adversary learns the approximate position of the

users belonging to each cluster. We now present a technique

that can lead the adversary to obtain more precise location

information for these users and to also compute the approx-

imate location of the other users. The technique is based on

trilateration [16]. It takes as input the approximate locations

given by the candidate cluster-to-city mapping with highest

relative probability. Our solution addresses two differences

with respect to “standard” trilateration: (1) only approximated

location information is available so we have to trilaterate with

rectangular areas instead of points; (2) approximate location of

users belonging to a cluster can be incorrect, due to the “cluster

stretching” problem. We tackle this inaccuracy through the

“refinement” technique.
(1) To address the difficulty of having only approximated

location information, we represent known users’ positions as

rectangular regions and we operate geometrical intersections

to locate users. Intuitively, suppose that a user u1 is at distance

δ from another user u2 located in a city z2. This bounds the

location of u1 to the set of points whose minimum distance

from z2 is at most δ. We denote this “extended” region as

ext(z2, δ), see an example in Figure 4(a). If the (approximate)

position user u1 is unknown, then the adversary learns that u1

is located inside ext(z2, δ). Otherwise, if the adversary already

knows that u1 is located in z1, it can be deduced that u1 is

located in the intersection between z1 and ext(z2, δ) (e.g., the

dark region in Figure 4(b)).

��

���� ���������� ������

��	���

	���

	���

��	���

(a) ext(z′, δ)

�� �

��

�

(b) Geometrical intersection

Fig. 4. Computation of intersection

When the above geometrical computation reduces the un-

certainty about the position of a user u, this restriction can

“propagate” to all the users u′ whose distance from u is

known. This idea leads to our iterative Algorithm 2 that

computes the function r associating a spatial region to each

user. In the initialization phase (Lines 1-4), each clustered user

is assigned to the corresponding city, while the other users

are assigned to the entire space. At each iteration (Lines 6-8)

for each pair of users 〈u1, u2〉 whose distance is known, we

compute the intersection between the approximate position of

u1 and ext(r(u2), du(u1, u2)) where r(u2) is the approximate

position of u2. The computation terminates when there are no

more approximate positions to restrict.
Note that the intersection between the approximate position

of u and ext(r(u2), du(u1, u2)) is not always a rectangle (see

again Figure 4(b)). When iterating, this can lead to figures with

complex shapes that require a non-constant-time computation

of the geometrical intersection function. In order to ease the

computation, we first compute the exact intersection and then

we bound it with its MBR (dotted lines in Figure 4(b)). In our

experiments this optimization leads to a negligible decrease

in the effectiveness of the algorithms (in terms of the size of

the approximated positions) but it decreases significantly the

computation time.

92

Algorithm 2 Trilateration

Input: the set U of users, a set C of clusters, a cluster-to-

region mapping m : C → Z, the function du.

Output: the function r(u) for each user u ∈ U .

Procedure:
1: for all u ∈ U do
2: if u ∈ cluster c ∈ C then r(u) = m(c)
3: else r(u) = entire space

4: end for
5: while (at least 1 region is reduced) do
6: for all pairs of users 〈u1, u2〉 such that du(u1, u2) is

defined do
7: r(u1) = MBR (r(u1) ∩ ext(r(u2), du(u1, u2)))
8: end for
9: end while

10: return function r()

(2) The “cluster stretching” problem (see Section III-B)

can lead to erroneous associations between users and regions.

In our experiments we observe that the “cluster stretching”

problem can drastically affect the precision of Algorithm 2.

Intuitively, this is caused by the iterations of Algorithm 2

that propagate errors. To prevent this, we adopt a solution

that improves the precision of the cluster-to-region mapping

and hence, as shown in Section IV, drastically increases the

precision of our attack. The idea is that, after computing the

mapping with highest probability, we “refine” the clustering

so that each cluster contains a fraction of the expected number

of users in the corresponding city. The refinement of a cluster

c takes as input a number n′ and the set of users belonging to

c: these users are clustered together until a cluster with exactly

n′ users is found. This cluster represents the refinement of c.
The refinement increases the precision in terms of the

correct association of users to a region since, in general,

the last users added to a cluster have a higher probability

to be outside the region, as shown in Example 5. We use

the refinement to restrict the set of users in a cluster to a

fraction of the expected users in the corresponding region. We

call “refinement factor” the percentage of expected users that

are discarded when refining the cluster. For example, with a

refinement factor of 20%, a cluster is refined including 80%
the expected users in the corresponding region.

Example 5. Consider Figure 3 again. The expected number of
users in Paris is 1200, while 1310 users have been clustered
into c. The figure shows with black dots the 1200 users in the
refinement of c (with refinement factor of 0%), while the gray
dots represent the other 110 users that are in c but not in its
refinement. The percentage of users of c that are located in
the MBR is about 90% while considering the refinement of c
the percentage is about 94% and among the 110 users in c
but not in the refinement the percentage is about 45%. This
clearly indicates that the first users that are clustered together
actually have a much higher probability of being within the
MBR.

IV. EXPERIMENTS

Our experiments simulate the observation knowledge (OK)

that an adversary may obtain by running a friend-finder service

in which privacy protection is implemented through a distance

preserving transformation. We use as background knowledge

(BK) publicly available geographic data and population den-

sity. The aim of the attack is to infer the actual position

of users (supposed to be hidden to the service) in terms

of a region in which they are located. In Section IV-A we

present the experimental setting. We evaluate the effectiveness

of the attack by first focusing on the clustering technique

(Section IV-B) and then showing how trilateration improves

the attack (Section IV-C). Finally, in Section IV-D we discuss

other experimental results we obtained.

A. Experimental setting

The overall structure of our experimental evaluation is the

following: we first simulate the position of some users in a

geographical area. Then, we compute the distance between

some pairs of users (hence simulating OK) and we use

this data to perform the attack. Finally, using the original

information about users’ position, we evaluate the correctness

of the attack.

The simulation of users’ position consists in randomly

choosing a point in the geographical area according to a proba-

bilistic distribution. We consider three scenarios corresponding

to the geographic areas covering Australia, France and the

entire world. The intuition behind the choice of the first two

scenarios is that the adversary could know, from a number

of different sources, the country where users are located. In

the world scenario we assume the adversary does not have this

knowledge. The choice of using France and Australia scenarios

is due to the fact that the two countries have very different

average population density, (about 2.8 inhabitants/km2 in

Australia, about 116 inhabitants/km2 in France) and also

large difference in population density variance (Australia is

characterized by large unpopulated regions, while in France

the variance of population density is much lower). Differently

from what expected, we obtained very similar results for these

two scenarios. For this reason, and due to page limit, in the

following of this section we only report the results for France.

The probabilistic distribution we adopted is taken from

GPWv3 [15], a dataset that provides density information by

dividing the world into cells and providing the number of

inhabitants for each cell. In our experiments we observed

that smaller cells result in more effective attacks while not

significantly impacting on the computation time. Hence, we

use the cells at the highest available resolution, i.e., 2.5 arc-

minutes, that corresponds to a cell edge of about 5km at the

equator. Since no public information is available at a higher

resolution, in the current setup we assume that, within each

cell, the population density is uniform. In the following we

denote with “#users” the value |U |.
Another parameter that has an impact on the attack is the

number of distances between users that are known to the

adversary. In the friend-finder service, this corresponds to the

93

�

��

��

��

��

���

�� �� �� �� ���
���

���

�

	
�����

������ �����������

���� ���������

(a) Cluster-to-city association in France

�

��

��

��

��

���

���
����
����

����
�����

�����

����

������� ���������
������ ���������

(b) Cluster-to-city association in France

�

��

��

��

��

���

���
����

����
�����

�����

�����

����

������� ���������
������ ���������

(c) Cluster-to-city association in the world

�

���

���

���

���

�

	��
����

����
����

�����

����
����

����������� ��������
����������� ������

(d) Users-to-city association in France

�

���

���

���

���

�

	��
����

����
�����

����

�����
����

����������� ��������
����������� ������

(e) Users-to-city association in the world

�

��

��

��

��

���

��	
��		

���
���	

���
���	

���
���	

��	
��		

�

�

����� �����������
������ ����������

(f) Cluster-to-city association in France

Fig. 5. Results obtained without trilateration

mean number of friendships per user (#friends). In order to

capture the intuition that users tend to have more friends in a

close-by region, 50% of each users’ friends are located in an

area whose size is 2% of the simulated region. In the case of

France this corresponds to a distance of 100km from the user.

The parameters k and |Z| are fixed to 8 and 11, respectively

(note that, when the clustering is successful, |C| = k). In our

experiments (not reported in the following) we observed that

while these values already enable powerful attacks, higher val-

ues of these two parameters would improve it even more. How-

ever, higher values negatively impact on the performances,

due to the reasons explained in Section III. Using these two

values for k and |Z| and the default values for #users and

#friends, we can compute an attack in about 2 minutes on

a 2.26GHz CPU with 4GB of main memory.

We evaluate the attack in three scenarios by varying pa-

rameters, showed in Table I, with default values in bold. The

value of the tolerance error factor α is set to 0.75, empirically

chosen, as will be shown in Section IV-B. The results are

computed as the average, as well as minimum and maximum,

out of 10 runs.

B. Evaluation of the Attack Based on Clustering Only

The aim of the experimental evaluation of the clustering

technique is to assess the attack effectiveness in terms of the

“cluster-to-city association” and “users-to-city association”.

The “cluster-to-city association” measures the percentage of

clusters that are correctly associated to the corresponding city.

A cluster is considered correctly assigned to a city if at least

50% of its users are located within the assigned city’s MBR.

We can observe from Figure 5(a) that, for values of #friends
equal to or larger than 40 in France, the clustering algorithm

TABLE I
PARAMETER VALUES

Parameter Values
#users 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000

#friends 10, 20, 40, 80, 120, 160, 200
refinement 0, 20, 40, 60, 80, 90,

92, 94, 95, 96, 97, 98, 99
α 1, 0.95, 0.90, 0.85, 0.80,0.75, 0.7,

0.65, 0.6, 0.55, 0.5
Scenario Australia, France, World

fails less than 3% of the times while, when it does not fail

clustering, the cluster-to-city association is correct 100% of

the times. This is an important property of our attack: when

the number of users is sufficiently large (in this case we are

using the default value of 16000) if the clustering does not fail,

then the adversary knows with high likelihood that the cluster-

to-city association is correct. This can also be observed in

Fig. 5(b) showing that the cluster-to-city association is always

correct for large values of #users. Vice versa, for #users
smaller than 4000, we observe that a wrong cluster-to-city

association is more likely.

We observe a similar trend in the world scenario (see

Figure 5(c)). In this case the algorithm always returns correct

cluster-to-city associations when there are at least 8000 users.

Compared to the France scenario, the percentage of failed

clustering decrease more slowly for larger values of #users.

Indeed, the clustering fails about 20% of the times with 64000
users. This is due to the fact that in the world scenario we

are simulating a much smaller percentage of the population.

94

�

���

���

���

���

�

����
����

����
�����

�����

��
	

��
�
�

���	��

������ ������	�����
���� ������	�����

(a) Precision of positioning users in an area
smaller than 50 km2 in France

�

��

��

��

��

���

����
����

����
�����

�����

�
��
�	
�

���	�

����� 	����	����
��� 	����	����

(b) Users correctly positioned in an area smaller
than 50 km2 in France

�

��

��

��

��� ��� ��� �� �� ��

�
��
�	
�

�	�� �� ���

(c) Size of the regions where users are correctly
positioned

�

��

��

	�

�

���

� �� �� 	�
� �� �

�
��
�
�

�������

��� �	��
�
�� �	��
�
� �	��
�
�� �	��
�

(d) Users correctly positioned in an area smaller
than 50 km2 in France

�

��

�

��

��

���

� �� � �� �� �� ��

��
��
��
�
�

����������

��� �������
�� �������
� �������
�� �������

(e) Precision of positioning users in an area
smaller than 50 km2 in France

Fig. 6. Results of the attack with trilateration

Indeed, with 32000 #users in France we simulate about

the 0.04% of the population, while with 64000 #users we

simulate only the 0.00001% of the world’s population.

The “user-to-city association” measures the precision and

recall of the association between a user and a city. In this case,

the association of a user with a city is correct if the cluster

containing that user is associated to the city where the user is

actually located. Since, as we observed above, the cluster-to-

city association is always correct for sufficiently large values

of #users, the user-to-city association helps us understanding

the impact of the “clustering stretching” problem. Consider

Figure 5(d): for values of #users equal to or larger than 2000
the average precision is almost not affected by the value of

#users and it is always above 90%. Similar trend and values

can be observed for the recall. This means that most of the

users that are located in a city are actually reported as being in

that city and that, in most of the cases, a user reported being

in a city is actually located there. A very similar result can be

observed for the world scenario (see Figure 5(e)). The main

difference is that we need a minimum of 8000 users, since for

smaller values of #users the clustering always fails.

One experiment is devoted to find a proper value for the

tolerance factor α described in Section III-B. As shown in

Figure 5(f), the cluster-to-city association often fails for large

values of α (above 0.85) since no consistent mapping is found.

For values smaller than 0.65, more consistent mappings need

to be evaluated, resulting in much higher computation time and

higher probabilities of errors in choosing the correct mapping.

A good trade-off is found for values of α between 0.7 and

0.8, for which there are no failed clusterings and the cluster-

to-city associations are always correct. For these reasons, in

our experiments we used a value of α = 0.75.

C. Evaluation of the attack with trilateration

The next set of experiments evaluates the effectiveness of

the trilateration step, in terms of its correctness and of the

percentage of users that it can associate to a “small” area.

Figure 6(a) and 6(b) highlight the improvement of the attack

due to trilateration. Figure 6(a) shows that the trilateration

technique improves the precision of the attack. This is mainly

due to the refinement step (see Section III-D). At the same

time, Figure 6(b) shows that, when trilateration is used, it is

possible to correctly associate more than 60% of the users

to an area smaller than 50km2. The attack with trilateration

is about three times better along this metric than the attack

without trilateration that can only locate the users in the cities.

The results in the world scenario (not shown here) are very

similar, given that the number of users is sufficiently large.

Figure 6(c) helps us understanding the size of the regions

where the attack locates the users. Approximately 40% of

the users are correctly associated with a region smaller than

25km2. The attack can also discover a more precise location

(less than 5km2) for about 416 users on average (i.e., 2.6%
of the users). A few users (5, on average) can be localized in

an area smaller than 1km2.

Figure 6(d) and Figure 6(e) show the percentage and the

precision, respectively, of users located in an area smaller than

50km2 for different values of the refinement factor. From the

comparison of the two figures, we can observe that there is a

trade-off between precision and the percentage of users whose

location is discovered: increasing the refinement with values

95

higher than 80% makes the precision converge to 1, but the

percentage of users whose location is discovered decreases.

Experiments show that the threshold value depends on the

value #friends: when this value is equal to 20, better results

are obtained with a refinement factor of 0, while if #friends
are more than 80 a refinement factor of the 80% is needed.

D. Other experimental results

We run a set of experiments to evaluate the effectiveness

of our attack when only short distances (less than 3km) are

known to the adversary. This is the situation that would result

when using a defense like the one proposed in [12]. We

adapted our attack to this situation by changing the clustering

algorithm so that it terminates when the distance between the

two closest clusters is larger than 3km. A major difference

is due to the fact that in absence of long distances it is not

possible to compute if a cluster-to-region mapping is consistent

or not. For this reason we skip the consistency check and com-

pute the relative probability for each mapping. This solution

incurs in two distinct problems. The first is a computation

cost problem: computing the relative probability among all

the possible mappings is much more time consuming than

first selecting consistent mappings and then computing their

probability. For this reason we had to reduce the values of k
and |Z| to a maximum of 3 and 4, respectively. The second

problem is related to the fact that, by assuming that all map-

pings are consistent, it is much more frequent that an incorrect

mapping has a high relative probability, hence resulting in an

incorrect cluster-to-city association. Despite these problems,

our results show that the attack is still effective in most of

the cases. Using default values for #users and #friends,

k = 2 and |Z| = 4 in France, our clustering algorithm has

always been able to correctly compute the clusters, and the

cluster-to-city association always resulted to be correct. The

computation time is in the order of 2 minutes. However, we

observed that, differently from the case in which even long

distances are known to the adversary, increasing the values

of k and |Z| can result in worse performance, since wrong

cluster-to-city associations are more frequent. For example,

by using k = 3 and |Z| = 4 we obtained 73% of correct

cluster-to-city associations. Overall, we can conclude that the

application of a defense technique like the one proposed in

[12] to our reference scenario (e.g., a friend-finder service)

does not protect from our attack, that it still able to identify

the correct position of many users. On the other hand this

defense poses some challenges to our attack both from the

computational point of view, and from its effectiveness, since

it reduces the number of possible users whose position can be

directly identified.

V. CONCLUSIONS

In this paper we investigated how distance information

between moving individuals can be used to violate location

privacy in presence of background knowledge about popu-

lation density. In contrast with other kinds of background

knowledge that have been considered in the literature we base

our attack entirely on public knowledge and on realistic partial

distance information as it could be released by a geo-social

network friend-finder service. Our experiments show that the

knowledge of a relatively low number of distances is sufficient

to correctly position the majority of users in an area smaller

than 50 km2 and to correctly identify the position of some

users in an area smaller than 1 km2.

We believe that this study shades a new light on the safety

of distance preserving transformations as privacy techniques;

at the very least, it provides new important elements to design

safer defense techniques considering public knowledge on

population density. The major future work is indeed the design

of these techniques.

VI. ACKNOWLEDGMENTS

The authors wish to thank X. Sean Wang for his insightful

comments on a preliminary version of this paper. This work

was partially supported by Italian MIUR under grants FIRB-

RBFR081L58 002.

REFERENCES

[1] C. Bettini, S. Jajodia, P. Samarati, and X. S. Wang, Privacy in Location-
Based Applications, ser. LNCS. Springer, 2009.

[2] G. Ghinita, “Private queries and trajectory anonymization: a dual per-
spective on location privacy,” Trans. Data Privacy, 2009.

[3] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, Lester and Pierre:
Three protocols for location privacy,” in Privacy Enhancing Technolo-
gies, ser. LNCS. Springer, 2007.

[4] L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu, and O. Andersen, “A
location privacy aware friend locator,” in Proc. of the 11th Int. Symp.
on Spatial and Temporal Databases, ser. LNCS. Springer, 2009.

[5] L. Šikšnys, J. R. Thomsen, S. Šaltenis, and M. L. Yiu, “Private and
flexible proximity detection in mobile social networks,” in Proc. of the
11th Int. Conf. on Mobile Data Management. IEEE, 2010.

[6] H. P. Li, H. Hu, and J. Xu, “Nearby friend alert: Location anonymity
in mobile geo-social networks,” IEEE Pervasive Computing, 2012.

[7] S. Mascetti, C. Bettini, and D. Freni, “Longitude: Centralized privacy-
preserving computation of users’ proximity,” in Proc. of 6th VLDB
workshop on Secure Data Management, ser. LNCS. Springer, 2009.

[8] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia, “Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies,” The VLDB Journal, 2011.

[9] H. Hu and J. Xu, “Non-exposure location anonymity,” in Proc. of the
25th Int. Conf. on Data Engineering. IEEE, 2009.

[10] K. Liu, C. Giannella, and H. Kargupta, “An attacker’s view of distance
preserving maps for privacy preserving data mining,” in Proc. of the
10th Eur. Conf. on Principles and Practice of Knowledge Discovery in
Databases. Springer, 2006.

[11] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in Proc. of the 2009 SIGMOD
Int. Conf. on Management of data. ACM, 2009.

[12] G. Ghinita, C. R. Vicente, N. Shang, and E. Bertino, “Privacy-preserving
matching of spatial datasets with protection against background knowl-
edge,” in Proc. of the 18th SIGSPATIAL Int. Conf. on Advances in
Geographic Information Systems. ACM, 2010.

[13] S. Mascetti, L. Bertolaja, and C. Bettini, “Location privacy attacks based
on distance and density information,” in Proc. of the 20th SIGSPATIAL
Int. Conf. on Advances in Geographic Information Systems. ACM,
2012.

[14] R. Sibson, “SLINK: an optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, 1973.

[15] C. U. Center for International Earth Science Information Net-
work (CIESIN) and C. I. de Agricultura Tropical (CIAT), “Gridded
population of the world, version 3 (gpwv3),” 2005.

[16] H. L. Groginsky, “Position estimation using only multiple simultaneous
range measurements,” IRE Transactions on Aeronautical and Naviga-
tional Electronics, 1959.

96

